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CkJIIsider  tlIc ])rol)lcm of d e t e c t i n g  and local i~ing a f r o n t  ol)jtct  ]Imvillp; in al] “cswn(ially
sla(, ionary” lJaclip; roIIIld,  using a srqucncr  of ttvo-tlilllrllsiollal  low- SNli i][]agcs of tltc sccnc.
f\ na(rlral apprmcl  I consists  of ‘Sdip; itizillg” cacll sllaIdIIJt  into a (Iiscrclc set of olmrvations,
sllfylciclltly  (])PrlIal)s not, exactly)  matcl]cd  t o  tllr ol)ject in qucs~ion, tll(ll  {nrrkin~ [11(’ Ol)jccl
~]~il]g aII a]~]lrc)[)liat,(. sloc]]astic  f i l ter . ‘1’IIc tracking  IV(IUICI  I)c cxpoctrtl  to INakc  II]) f o r  tlIc
lol~ signal-tc-noise ratio,  tlIus allo}viug  otlr to “cohcrcntly ’i procm sl]cccssivc ilnap;cs  in order
to I)ca( dolvn lIIC noise and localize the ol~jecl. ‘I’l Ius, ‘tracliilig” lIerc does not refer to tllc
ususa] notion  of dctcctillg  tllr]l tracking: rath(r, \Yc tr~ic!i in ordc) if) drtcct. ‘J’hc [)rol)lcm
then l)ccomcs one of cl]oosing  the ap])ro])riatc  i]nagc rc~)]wntaticon  as Ivrll a.< tllc Ol)timal  (a]](l
llcccssarily  no]~-lincnr)  filter. l\c propose exact  and ap])] oximat  c solul ions using Ivavclcts  and
tllc Zakai cquntion ‘]’]Ic  sIINotlIIIcss  of tl]c wavclcts US(  d is i-cquired in tlIc derivation of tile
cvolll~ion equation  for tllc conditional dc!lsity g;iving tll( filter, and tllcir  ortllogonality  makes
it possil)lc to cnrry ollt actual computations of the It< -and cl]allp;f2-cJf-g:i(]gc- t,cr]ns  in tllc
algorithm effect ively.
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1 Introduction

Consider tllc prohlcm  of determining the I)osi-
tion of an ol)jcct  moving on a line, in a plane,
or in 3-space, using a sequence of snaps}]ots
of the “mostly stationary’) regicm of space in
which it, evolves. Specifically, we would like
to teacl] a computer to extract fro~n tllc se-
quence of images the coordinates of the ob-
ject of int,ermt,  in the case where the signal-
to-noise ratio is very low. A nat,ural first at-
tempt to solve this prot)lcm consists of pr~
cmsing  one image at a time,  slid looking for
ttlc pattern(s) we cxIJcct  the object to produce
on each frame individually. One would thus
I,uild templates of these pattmns and ]nove
the templates all over the individual in)a,ge,
looking for the best “match”. his first at-
tempt is indeed firmly justified n~atl~en~ati-
cally and would give a classical matched fil-
ter algorithm. Matched-filter processing is by
now well-understood, and sop]listicated  con-
siderations involving noise models, noise es-
timates, and various error probabilities allow
tlic design ofsllital)lel  l~atcl~cd-filter detectors.
Thus, cases where good localization is possil)le
on a single image can be considered solved,
and shall not concern us further, except illas-
]nucl) as a tracking algorithm might make the
detection-and-localization process on later in~-
agrs  substantially more efflcicnt. Rat,hcr, let
us look at the problcm  where local izatio~l c)f
the object on a single image is impossible or
at least  hard and fraught with ambiguity. IJor
example, the ol)jcct  may not be ‘(visil)le” at
a n o n  anyimagc, Ofcourse, ift}]e object  Tvcre
moving in a straight line, one could add tile
successive images properly lined up along var-
ious possible bearings, thus hoping that tile
“signals” on the various images would add up
“coherently” whi]c all t,he rest, the “noise”,
would do so “incoherently”: this would l)c
ttlc equivalent of the well-known delay-and-
sum beamforming  idea for plane waves in var-

ious scttlngs. It would allow one to increase
the ‘Lsigll  al-to-noise’) ratio sufilciently,  given
cJIOUgh illlagCS (thC l] UJ]l~)Cr  Of ilnagc% would
corrcspol!d, in this atlalogy, to the numt)er
of array elements), to brilig the “spike” well
above tll(- noise thresl~o]d and thus make the
required detection. (Infortunatelyj  the time
s c a l e s  in\rolvcd )nay make it higll]y unlike]y
that the moving object will have kept to a
straight line track throughout tile observation
])rocess; Iliislllo(lific(l  r]latcllecl-filter apl>roac}l
would thus  fail in the lJresencc  of a typically
‘(maneuvering” object. in other cases, many
I,arts  of an image may bc likely to provide
equally p,ood matches with tllc template, thus
creating diflcult aml)iguity  problems.

This filtering problem bears  a definite re-
sen~b]an  cetothctypica] ]~roblcmsolvcd bythc
Kaln~an  -Ilucyfilter.  Indeed, in both  cases we
aregivcl]  asct ofobscrvations  at asequcnccof
times  (tile  scqucmce of images). Then, know-
ing how these observations arc affected by t}te
coordinates of c)ur ot)jcct  (i.e. knowing tile
})attern that the presclice of the object cre-
ates on an individual i]nagc), and knowing the
laws that, must be obeyed by the motion of
tllc ol)jcct (in our case, to keep things sin~-
ple, SOII-1(, continuity requircnlent,s  and hounds
on the \clocity), we want to design an algo-
r i thm that will cstilnate as best  can bc the
l)osit ion of the object at every point in time.
Tile alg, ~rithm can, and indeed should, make
IISC of all past  information in order to refine
at ractl time step its best cstirnate  for the
now l~osltion  of the object. ‘1’}Ius, this “track-
ing” NT)IJld lx expected to make up for ttle in-
t,!lla}llr  stlortcomings  of any attempted noise-
r+-,!llrt  icl])/l)ackF;rolll l(]-sll~)l)ressioll  /sigrlal-
PIIIIWICCIrWIlt, procedurr  applied to each indi-
~l<iual ill~age, One would then he able to find
m){l Ira[k  tllc o})jcct even if it were impossible
[o isolate on ally single frame. l’he  Kalman
filler is,lustsucll an algorittlm,  except that it
applies only to the linear  case, where the ef-
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feet of tlIc ol)jcct  on the observations is a linear
function of the coordinates of ttlc object  In
the casccrfilna?;cs,  that, isofcoursc  never (1IC
case: ttlc cflect is by definition local, therefc~re
the nlathematical functions in question turn
out, to lW at the very least bounded, and in
any case far from linear.

l’crrtunately, a generalization c~fsortsof  IIlc
Kalman  filter to the non-linear case dots al-
ready exist,  ttlanks  to the work of 1’. Duncan,
1{. hIortc~~sc~~,  al~dh4.  Zakai. Tlmydcrivedlhe
eqllations  ttlat must be solved in order to find
lIIC “optimal” filter  (in the same lca.+squarcs
scllse as the Ralman  case) whic]l, when fed a
set, of not,-necessarily-linear observations, will
produce the best  estimate of the rcquirecl  coor-
dinates. ‘1’hc  rest  of this paper descrilms how
tllcirr elllarkal.)lcr  cs~llts, which until now have
been nlostlyo  fathcoretica linterest, canhclp
solve our prol)lem practically,

‘J’l]c  most  interesting application of our ap-
proac])  is to the case where the SNR is so lC,W
ttlat the object is not dctcc.table on any sin-
gle image, g’hc idea c)f using stochastic filter-
ing tecliniqucs  to track  ol)jects  on sequences of
images is not, new (see e.g. [IIhT],  [1,}’]).  ‘1’hc
stochastic approaches proposed to date ty~Ji-
cally use extended  Kalman  filters to estimate
tt]c motion parameters and track the objcc.t.
Our purpose is different. Indeed, we do not
assume t})at t,tlc ol)jcct, has been detected or
localized, ancl WC seek a way to combine a suf-
ficient nundm  of successive images (the exact
number ])eing in all likelihood inversely pro-
portional to the signal-to-noise ratio) in orcler
to detect the object. ‘1’he extended Kalma.n fil-
tering approach is unfortunately not appropri-
ate for this  problem because the dependence of
the data (the images) on the variables to be es-
timated (the coordinates of the object) is riot
only non-linear, it is a non-analytic function
(in fact, it is higl,]y localized): using a Tbylor
series approximation, as the extended Kal~nan
filtering approach recluires,  would therefore be

totally intippropriate, OJ)CC tl]c object is de-
tected an] roughly localized, however, track-
ing ~neth~)ds  in the co~ivcntiona]  sense (such
as the oIics  derived from tile approaches de-
scribed i) [IIN] and [1A’]  for example) would
thcll be quite al)plicablc,  and substantially
more con Iput ationally  eflicient.

2 Mathematical formula-
tion of the problem

‘lo make the problem nlatllematically precise,
let us assume that each image provides us
concretely with a fullci,  ion on a compact re-
gion of RN (wit]]  N =, 1,2, or 3), re~~rescnt-
ing the il~tensity of the image at every point
irl the rc gion of interest. ~le problem will
then be ( we-fold: finding a good way to rep-
resent this sequence of functions, then finding
a good ~vay of extracting the position of the
particle in question from the chronological se-
quence of pictures. The precise meaning of
“good” in the image representation problem
obviouslj  depends on the method one chooses
to track the particle. A natural choice is to
look for a (necessarily nonlinear) filter. View-
ing the ]~osition  r~ of tllc object at time t as
a stocha.<tic time-varying vector, one will then
nave to estimate qua]ltitic+  which are functions
of the stI )chastic process {rt } (for example its
mca~i, its variallcc,  etc.), c)n the basis of in-
formation obtained from related “directly ob-
servable’ processes, namely  the information in
the sequence of images of the scene, Thus,
one nee~ls to identify tllcsc observation pro-
cesses precisely, and to make explicit, their cle-
pcnclcncc on the object-position process Tt.

To that end, let us assume for simplicity,
that the images are olle-clilI-lensiollal. One rca-
sonab]e choice for the o}mrvation  processes is
to take (j! = the intensity of the image at time
t over tl[c subinterval  [i6, (r’ -i 1)6],  where 6 is

,,
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a ]Jositivc  real num}~er  chosen and fixed a pri-
ori, and r’ runs over all integt’rs+ Synlbolically,

J

[1+ l)J
~: ~ Sf (r)d~,  where the function St

represenig  tl)c intensity of t lle image at time t.
\Ye would tlwn end up with observation prG
cessrs  Oi, each representing t}le intensity of
the image over the pixel of width  6 centered
around (r’ + 1 /2)r5.  g’his  reason al)]c choice has
one important drawback: in t,hc language of
[SM],  itpresupposest h a t  tlleilllagescorltairl
no detail structure finer than an a priori cll~
sen scale, in thenotatlion herer$. ‘I’o get around
this prol)lem, let us rewrite the formula for
each ohscrvation  process as

J

(i+l)~

/

Cu
0:> s~(r)dr =: $+(6- ‘I!-i)si(t)dz  ,

ib – m
( 1 )

wllcre rj is the square window function q+(T) =:
1 if O < x < 1, and O c)thcrwisc.  ‘J’his  new
notation suggests that a natural way to replace
the 0~’s by processes which do not a priori
eliminate finer details in the images (see [SNI])
is to choose as our new processes

/

Cm
Z;J = i’,,j(x)st(~)~~ , (2)

–03

w h e r e  r/10,0 is the Ilaar wavclct r/~O,o(x) = 1 if
0<.r < 1/2, --1 if 1/2< x< l,and Ooth-
erwise,  and r/I,,J(Z) = 2ir40,0(2Jx - t). H e r e ,
? and J range over all the integers. At this
stage, tllcrc  is no need to restrict ourselves
to ttle II aar wavelctl. Sc) let us assume  that
t llc ohservat  ion processes are chosen accord-
iwg to formula (2) but with ~)o,o any wavclet for
which t,tle family {@,,l} is an orthonormal  basis
for tile space of all square-integrable functions
(see, e.g., [11~1],  [ID2],  [SM]).

IIow do these  observation processes depclld
on the ol)ject-position  process xf? Assume, for
simplicity, that the object  is “symmetric” in
such a way that, the intensity pattern it makes
when it is placed, in any orientation, at the

origin is always given hy tile function r(z). In
tfle l-dimensional case, this means that r is
an even function (in t IIC 2-dinlensional  case,
this woul~l man that r is independent of polar
angle). One can assuine that the image at t,imc
i is then given by

St(j) = r’(r – 1’1) + (b~(l’) – t(r)).

‘1’he tern) in parentheses rel)resents  the back-
ground intensity bt at time f,- from which a
template t)ackground inte~lsit,y  6 lIas been sub-
tracted. ‘1’he original assumption that the
t)ackground is ‘(mostly stationary” was meant
to imply that there  is a given background 1
from whirh  bt cannot differ much. l,et us now
make this more precise by requiring that the
term in ~)arentheses  be tllc Jvhitc noise process
Nt(r), and that Nt(~),  Nf, (T’)  t)e independent
for all ~ different from Y’, f cliffercnt from t’.
‘I’hen, under  these assuin~)tions, the ohscrva-
tions are given by

/

o

J

cm
Z; ’J= 7/t)j(r)r(r--xt)  dx+ rfJ1,j(l)Nt(2)&!

. ..0 –cm

=.f,,)(zi) + N;’~ ,

where th~ functions f,,j  are given by

.ft,l(Y) == /m) ~’t,l(~)r(~  – VW,
— Cm

while N; J is similarly given by

AT; J =
{m

$,,j(r)N, (r)cla’ .
. –m

‘l’he assu mpt ion that {@,,j } is an orthonormal
basis iml,lies that each AT~IJ  is again a white

noise process and that Nj’J, N;’ ‘J’ are indepen-
dent if (z. j) # (2’ ,3’). III less precise terms, t,hc
orthonorlna]  basis allowed us to represent the
image se~luencc  as a discrete set of observation
processes in which the noise is no more corre-
lated than it was in the original images. In the
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nmrc prccisc  language of stochastic processes,
cacll A~~’J is written as AT~’]dt  = crtJdb~’J, wllcre
h;” is standard Ilrownian  nlotioll,  and wl~ere
w’e will assunw for sinll)licity  that all the noise
variances ot’~ are independent of (z, j), writing
*W H ~ (()]is i s  eqlliva]cnt  tO assuming  that
tile distribution of the error incurred in sul~-
tracting ~(~) fronl Lt(T)  is independent of the
sppcific location r).

Our problen~ is now t,o look for a good esti-
nlate of the coordinates of the object  z~, given
t,tle ol)servat,ions Z~’J as in equation (2). Defill-

/

t
ing, y~’) to be yj’~ = Zj3dT, Lhis is a typical

problcn]  in non-linea~  filtering: given a n~odel
for the dynanlics  (evolution in tin~e) of ~j, for
any tinlc  t, and given the past sanlples  of the
observation processes y; ’~, T < t, which dc-
Ilcrld On r,, calculate the conditional expec-

ta t ion ~;{ltl y,, O $ T ~ t} providing ttlc
I)est estinlate of rt glvcn all the observations
ltewriting equation (2) in ternls  of t}lc {!L’J } ‘s,
one finds that, the dependence of the y~’~ On X!
is given by

(/y; ‘J = j-,j(x, )dt + UCfb:’j . (3)

‘1’bus, regardless of the nlotion model for r~,
our problenl  is indeed nonlinear because the
functionsj,)j  are far from linear (indccd,  t,lley
are quite localized in space).

One of tllc nlajor  results of non-linear fil-
tering in the last  twenty years is that such a
non-linear cstinlation  protrlern  is in fact scdv-
able, provided a certain second order partial
differential equation can be solved. 1’}]c  latter
is ttic Zakai equation (see for cxarnple  [BC],
[l, S], [M~], [}tTI],  [ILM], ~IIJ]). Za!iai’srenlark-
al)lc result has unfortunately not been widely
known and used because Zakai’s  equatio~l is, in
typical cases, quite difficult to solve, exactly or
nunlerically.

q’o preserve the flow of our exposition, we
sllnln~arize t,tle r e su l t s  o f  R. Mortensen,  1’.

IJuncan  al~d Zakai wl]ich wc will need in Ap-
l)cndix A, and continue here with the nlain
topic.  WTe just observe now that in order to use
tllesc results to deal with our problenl,  we still
need to write down the a priori constraints on
the motion of the object (i.e., the ana]ogue in
our case of equation (A 1 ) of the appendix). In
tl]c next section, we \vill look at two such n~o-
tion n~odtls, and try to SOIVC the Xakai equa-
tion in tllosc two cases. Notice also that the
con]ponellts  of our observation functions nlust
be assunld  differentiable in order for the for-
rnalisn~ of stochastic filtering to apply. The
observation functions are the

/
f,,,(z) =  2+ m +o,o(2U”  - I)r(l!’ - +k’ ,

— w,
(4)

and r is not necessarily continuous let alone
clifferentiable (indeed, the object will typically
have a w(l]-defined edge, and r will then drop
to O abruptly at that, edge), We nnrst therefore
require that r/lO)O  be differentiable. ‘1’he Haar
wavelet that we considered initially is not even
continuollsj  but there  are many other wave]cts
generatirlg  orthonorn~a] I)ases whic}l are (see
[11)1], [11)2]).

3 The nonlinear filter

At this stage, we have fornlulated  the problem
in such a way that c)ur c)l>servation  processes
do satisfy the assunq>tions made in the hy-
~]otheses  leading to tile Zakai equation. We
still need to identify tile state variables that
must be estin~ated and the evolution equation
governing their dynan]ics  (i.e., the analogue  of
equation (A 1) for our problcrn).  Calling X~
our vcct or of state variables, heuristically it
seen-w natural to build into our n~odel for Xt
the roniinuity  of the nlotion  of the object, as
well as any b o u n d s  on ifs veiociirj that seen~
p})ysically re~sonalllc.  A natural choice would
be to take Xt =. It itself, and, lacking any a

4
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priori !inowlcxlgc  about  the nlotion of our ob-
ject, tc) assume  that the nlotion is Rrownian.
h~atllcl~~ati$ally, wc woylcl then be assun~ing
tl]at 11 = a IIf, wllcre a would incorporate all
our a priori assunlptions  al)out  the tende]lcy
of our ol)jcct  to move away from ro.  W]lilc
tllc sinlp]icity  of this a.ssunlptioll is appealing’,
it IIas two n]ajor  drawbacks. 1( is not likely to
reflect  realistically the actual nlotion  of nlany
ol)jccts  we would typically bc interested in lc-
eating; and tracking. I’erllaps  nmrc inlportant,
it will not allow us to extend these considera-
tions  to ol)jccts  which do not possess t}lc syn-i-
n~etry we nave assunwd earlier. Indeed, the
two n~otion nlodels  wc will consider in ,grcater
detail  do allow the nlcthod  to apply to asyln-
nwtric  ot~jccts.  So, instcacl of this natural l)ut
too sinlplc  n~otion n~odcl,  let us consider, as a
first alternative, its first integral

Still assuming  for sinlplicity  that, the nmtion
is taking  place on tlic real line (i.e., in our orig-
inal notation, with N = 1), let us assume that
the nlotion  of our object is described by a 2-
dinlensiona]  process X~, written X~ = (xi,  vt),
with r representing the position of the ohjcct,
v its velocity, For the dynanlics,  we assume
that

wl]cre 111 is IIrc)wnian  motion. This is the ana-

Iogue  of equation (A 1 ) w}]ich describes t IIis
first n~otion r-node]. It says that the velocity
of our object evolves according to a JIrownian
nlotion  starting fronl an initial velocity vo, It
is therefore natural to call this model the illte-
,gral of IIrownian nlotion.  ~’lle corresponding
Zakai equation can now be obtained by identi-
fying the various ternls  in the general version
given in tl]e appendix. one finds that, in this

case,

(5)
wilcre A,, denotes the l,aplacian  in v (explic-

itly, in tile ol~e-cli~llel~siollal  case, Au = ~),
.8 u 2

and Vr denotes the gradient in x (again, in the

one-din~c nsional case, VT = ~).

While the general forln of the Zakai equa-
tion looked quite comp]ic.atcd, its specializa-
tion in 1 his case gives a sinlpler  equat ion.
‘1’he rigl,t-hand-side of (5) consists of three
tcrn~s:  a “diffusion” in t] o]ily, a “drift” in r,
and a ]~~lllti}>lic.atiot~ term.  Still, solving such
a n  equal ion exactly is cluite difficult. I1ow-
ever we can obtain an approxinlate  solution
if wc “g,roup” the terlns  on the right judi-
ciously. ]ndecd,  let us call E the function. .

. . ,.
appcari~]g  as tlie mult ipl icat ion tcrnl,  and
rewrite the operators ill t}le right-hand-side of
(5) as

,

1)2 = -:71 v= – E ,

so that I Ile Zakai cquat  ion itself can now be
}vritten as

(6)

q’o proceed, let us n~ake an analogy with lin-
ear systcrns  of first order orclinary differential
equations. I’o find a vector-valued function of
tinle  }’(i) solving a systen~ ~ = (Al + Az)Y,
wllcre A ~ , A2 arc constant nlatrices,  one sin~-
l,ly cornl,utes  }’(t) = CXIJ (f(Al + A2)) ~ Y ( O ) ,
where }’(0) is a prcsl)ccified in i t i a l  cond i -
tion. Nlorcover, if tllc sun]  Al +- A2 on

5



.

4

tl)e ri.gilt-hanct-side is ctimcu]t  to exponcntiale,
onc can usc ttlc fornlula  e x p  (:\Al -1 AZ)) :=
]inl ,l_+m, (cxp(~!~)cxp  (~,4z))  ,  w h i c h  i s
qui te  llclIJful  if the expcjnential  of each sllnl-
lnand  is known. In fact,, one does not need
to let n tend all the way to cm in this last
fornlula  if onc is only int,crcsted in an approxi-
]nate  answer. lndecd,  with n = 1, one call still
say that if i, is an arbitrary point in tin~c, and
if >’(f) is known, then for 6 sufflcient]y slnal]
tl)c solution at t +- 6 can be approxinlated  t,y
}’(i-I 6) N exp(c$,41)exp (15 A2)Y(t).  hloreover,
it turns out  that the % sign in this last formula
can in fact lJC replaced by an exact equality if
fhc nlatrices  A 1 and AZ cotnnlutc.

in our case, these  considerations have a
natural generalization. If we choose a tinw-
increnlent  6 that, issnlall enough that the func-
tion l;(t, ~,v) can bc considered ahnost  inde-
pendent of tinw  on the interval [t, t+ 6], one
can tl)cn write down an approximate solution
to (6) in ttlc fc)rnl

for p a function of (*, II).
l;quation (7)givcs precursive procedllrc  for

finding an approxinlate  solution to the Za-
kai equation in this case, i.e. when the n~~
tion ~llodel istllei  l]tegralof ~]rc)wl~iat~  n~otion:
starting with the initial density ~o, “advance
it” in time  by snlall  tilIlc-il~crclllellts accord-
ing to (7). IIeuristicallyj  at each iteration, tlIc
first step is to account for the ranctornness in
the lnotion  that could nave affected the ~]osi-

tion of the object t>et~veen time t and t + 6;
the sccolld  step is to incorporate the inforli~a-
t i o n  colllainecl  ill the ol)servations  j,,,. l’hat
is what equations (8) and (9) accon~plish.  A
lnorcgelleral  versic)n  of this iclea$~’as origirlally
~)roposcfl and extc]lsivcly  rlevelc)pcd  in [111$’].
]n our case, as wc will sec in the next sec-
tion, this  sinlp]e ap])roxi]nation  will actually
give the exact solutic,n  ill ~he sinl~,lest case.

l’or tt, e second nlotic~n mode], we adapt an
icleafroln  V. IIcnes’s  considerations [LTB]. I,ct
us  ~efcr to it as the l’c)isson  rnodcl. We wil l
still nec<l our two variables Yt and Vt, sut)-

d$’t
ject totlleasslllll~>tic)rls  –cj~- = vt, and that the

velocity process Ut takes illdcpendcnt  values,
with dcllsity  g, wllicll are constant hetwecn
junl]~s of a Poisson process of rate ,4, This
n~eans that our object nloves in straight line
segnwnts,  changing its course at a sequence
of tinlcs  {t I,t2, t3,  . ..} such  that the quanti-
ties fl, tz –fl, t3 – /2, ... are distrit)uted  ac-
cording Loa l’oisson clistril)ut,ion ofnlean I/A,
and sucli that t}lc new velocities at each course
change ore distri})uted according to a prespcc-
ified dcllsity functic)n g. l’he c o r r e s p o n d i n g
Zatiai equation is

(11)
tvtl~re j_ 1 is assunwd to be identically zero.
ln{lrcd,  the requirenlent  that ~ satisfy the Za-
kai cquktion  (10) is exactly equivalent to the
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rcqulrcnlent,  that, each p,, satllsty cquatlon  ( 1 1).
‘1’lle introduction of the index n n~akes it lJos-
sib]c to SOIVC tl)is systenl  o f  inhon~ogerleous
first order  equations }Jy induction, using tile
nwthod  of characteristics. in fact, if we set

ttlc equatiol]  fc)r PO is solvecl by

io(f, r,l’)=~(o,  z+l’, tl)c
-J; F(s,t-(f-s)ljc/s

1

where tile initial density ~(O,r,v)  is assulned
known. Practically, a slightly more general
I’crsion of ttlis equation, relating ~ at tiww t
to ~ at any previous instant in tinle,  woulcl be
useful, ‘]’his can be obtained by writing the
SOIU t,ion for ~,L, n ~ O as

li(f,~,l’)=  fi, (to, o’-(t-f”)t), t)e
-J; F(,,r-(t-s)v)d,

~~(@J:[JLl (.$,x – (t - S)v,v’)dv’lc
- f: f’(7,T-(t-T)t’) dT~:

( 1 2 ”

keeping in n~ind that ~-1 is zero. ‘1’hat these
fornlu]as  for ~,, do give solutions to the ~)re-
scribed equations for ~,1 can be verified di-
rectly. Onc can now reconstitute j by adcling
all these  equations together. Remarkably, the
cquat  ion one then gets  is exactly (12) withc)ut
tt)c index n ! ‘1’he left-hand-sides add up to j
at tinle  f, and the right-hand-sides involve the
values of ~ at earlier tinles.

in this case, i.e. when t}le motion n~c)dcl is
the ]’oisson n~odel,  c)ne can thus again conl-
put c p })y “recursion” on t, this tinle  czaclly.
As before, at each new tin~e t, the iteration
proceeds in two steps: first the nlotion  ran-
donlness  is accounted for (witness the ternls
“~(to, .r-(t-to)v,  u)’) and “~(s, ~--(t–s)v’,  v)>’ in
(1 2), then  the infornlation  in the new obser-
vations is incorporated (the exponential ternm
in ( 1 2)). ‘1’hc forvn of the solution in this case
hi,gll]igllts quite  clearly the tremendous sinl-
plification  one enjoys thanks to the orthc)g~
nality of the wavelet basis. This property is

not, Crucial to ttle cicr]vatlon  01 the equation
governing the corresponding conditional den-
sity. lI(lwever~ if it is not n~ade, one would
end up with a }Iug,e llu]nber of “cross-t crnls”
in tile e x p o n e n t s  aI)pearing  in tile fornlu]a
for ~,, ( and thus for ~) above, as well as in
the explcssion  relating p and ~, q’hesc cross-
tern~s W( )uld })e due to the correlation between
the noisl,  in the diffrrcnt  observations. They
would p] actically  n~a[lifcst  themselves as dou -
l)le sum (over (t, j), (z’,]’)) instead of tile sin-
gle sunls we now end UI) with, and would then
nlake atly inl~~le~~~er~tatio~~ of the fornlulas  pro-
IIibitively tin~e consuming. The orthogonal-
ity assulnption  has thus allowed us to replace
irnpossit,ly  ‘!dense” matrix multiplications of

]“IJA’;J ,f, ~ (where A wouldthe fc)rm ~,,,,,~,),  , ,

IIavc re~~resented  esscnt’ia~ly the noise correla-
tion nlat rix) by n~ana~eab]e  “diagonal” sums

Y’ J ~, ~ such as we now have,o f  t h e  fclrrn >~,,,

IIefor<  going on to the cxarnplcs,  it is inl-
portan( to notice that we only needed the or-
t hogonality  of the {@,,3}  and not Lheir com-
pleteness. ‘1’he results we nave obtained would
thus ren,ain  valid if only a finite subset of thenl
is used, which is indeed what must happen in
practice, While there  is in general no reason
to select a priori such a finite subset, there  is
nothing in the derivation of the formulas pre-
venting lIS fronl doing so. ludecd,  {@,,j } COUICI
I)e ally (Irthonornlal  set of continuously cliffer-
cntiablc  square- intcgrat)le  functions.

Finally, let us reconsider one other sinl-
plifying a.ssunlj)tic)n  w’llicll  c a n  bc renlovcd.
That is the assun)ptio]l about the synlnwtry
of r. Consider an ol)ject  n~oving  in the xl r2-
plane. If we nmrely  assun]e that the object is
rigid (with a possibly conlplicated  asyn~nwt-
ric shaI)c), the pattern it n~akes on an in)age
will de~)end on its vclc, city vector as well as
on its cc)ordinates. in fact, if r(rl, ~2) denotes
the pattern it n~akes wllcn it is placed at the
origin “lacing” in the direction of the positive

.,
(

,
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T’-axis,  its presence at (x), r;) at lin~e i, with
\,~.]O~ity  (U: , l;), will he rcprcsentccl  hy thC int-
ensity function

since the n~atrix  expressing the rotation c)f tllc
positive ~] -axis to the positive (v;, v:)-axis  is
exactly

‘1’bus, if II is any nlcnll)er of the orthonorlnal
set  wc liave chosen  to use to nlake our ol~scr-
vatiolls,  one can then compLltc the associated
olwervation  function f (see equation (4)) in
the form

f($’; , *?1 “: , @ =

4 Examples

‘1’l)c  first cxan~~)le illustrates the case where
tile Poisson and ~-Ilrownian  models are ex-
actly equivalent, nan~c]y  when A = O, u’ := O.
One can verify directly that tlIe  fornmlas  for
tllc co)lditiona]  density in the two cases are
tllcn identical and give the exact density func-
tion. In that ca$c, we are tracking a marker
n~oving  on a fixed course with constant veloc-
ity. For t,lle cxanlp]e,  we chose the “otJserva-
tions” to be l-dinlensional  inlages of a scene
consisting of a nlarker  nloving within the itlter-
val [0, 128A*] on the real line. ‘1’he “nlarker” is
given hy the function r(z) = 1 if Irl < 3A~/2,
0 otherwise, translated to whatever position
its “ccntcr”  occupies. SnapshcJts  of the scene
at 25 instants of time  At apart were synthes-
ized. Tl]e velocity Vt was kq)t constant; for

sinlplicit~’, \vc Cllosc’ 1, = -- A  t’/ A t. The
funct ion LCI,O = ~ was chosen to tje the scal-
ing ~unf.-f{on for the “clll)ic s~)line Tvavelet,” o f
Y. Mcyel (pictured ill [Shf]), rather than the
wavelct itself. It is continuously  diffcrentia}~lel
and equal to a cul)ic polynomial on every inter-
val [nA?,  (n -1 1 )Ar]. Its translates do fornl an
orthonorlna]  fan~ily, as required. We used the
128 observations Z* ’”, (1 ~ i s 128), obtained
using the functions +(z  –- iAr). The size and
rcsolutio)l  of the inlagcs wc synthesize and the
scale of I he motion justify this choice of the
function ~ and the cc)rrcsponcling,  finite  set of
observations. ‘Tile individual scenes were syn-
thesiiwd by starting the nlarker  at r. = 96A.?’,
and n~oving it at speed v fron~ there  on, adding
“noise” t hat is piecewisc colwtant  on every in-
terval [ti A r, (n -t 1 ) A z], with peak values
c}losen  irldcpcndcnt]y  frcml a O-mean nornlal
distribut  ion. The o in tflc equation for the
observation process the~l turns out to be the
root-nlean-square licight of these peaks. Fi-
nally, WV, assunlcd  that the initial density is
uniform over the interval [0, 128A2].

lrigur(  1 sholvs onc sll ch set of “sn apsllots>’
(tin~c in creases upward), with u = .1. F’ig-
ure 2 slfows another one, with a = 1. The
(norlnallzecl, discrete  version of the) density
fU1lction  ~w(~),  and tile C)ptinlal  filter ~k~ C

/
?Pw ( x)dr can hc conlputed  using the for-

nmla  fc)r the solutic)n of the Zakai equ at ion.
‘The vallles of im are SIIOWU to the right,  of the
corresponding “snapslmt)’  in Figures 1 and 2.
The accllracy  of tile result is hardly surprising.
One coIIld liave ol}taincd the location of the
marker, apparently nlore simply, by “stack-
ing’ ) the appropriately laterally shifted signals
on top of one another (i.e. adding the suitably
trans]at  ed signals) to increase the ‘%ignal-to-
noisc” t atio and thus extract the position of
the n]a)ker out of the noise. In effect, (hat is
exactly what, our algorithnl  does in this case,
only better so in tlic sense that it is optin]al

8
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(in I)ariicular,  it draws the appropriate coli-
clusiol)s at tllc earliest opportunity)

‘1’]Ic “s})ift,-allcl-sl]ll)”  approach is not apl)li-
caljlc in (he case of a “nlaneuvcring”  ot~ject,
IIowevcr. ‘1’hc second example illustrates the
fornlulas  wc derived in the previous section in
this case. in this cxan~plc,  we used the Pois-
son n~otion nlodc] with 1/~ = hAt to generate
a path for the n~arker, with a tw~point  den-
sity function for t]le velocity, narne]y  g(~ A
~/At) = 1 /2. l’bus, the n~arkcr n~aintains the
salnc sl)ccd through its direction changes. }’i,g-
urc 30 SIIOWS the snapshots synthesized with
~ = ]/2, wit,]] the actual location of the center
of tile n~arker  to the right, of the correspond-
ing inlagc. l’igure  3b shows the graphs of the
corresponding nornlalized  densities pm. ‘1’he
figure to the right  of each graph is its expected
value, i.e. the value of kw. h’ote that, in
tliis  case, tile evolution of the position of the
nlarkcr  can t.)e visually estin~ated by a cunning
olmerver: incleed, by tilting the page in such a
way that the grazing angle of the rays fronl the
page to tile eyc of the astute observer is very
shallow, she (or be) can guess fairly accurately
the position of the n~arker on every fran~e.  ‘l’lie
general form of the algorithm of the previous
srction allows onc in effect  to generalize this
“tilting’ ) approach to the 2-din~ensional  case
(wl~ere  it cannot bc carried out visually), again
in an optimal way. l’crhaps  more remarkably,
t]le algorithm tracks a marker  even when t}lc
‘[tilting” approach in the l-dimensional case
eludes the most  astute observer. I’igurc  4a
SIIOWS snapshots synthesized as in F’igurc 3(L
l)ut with u == 1. An honest observer would find
it diff]cu]t  to spot, the position  of the marker
visually with any precision (of course, a more
accurate assessment would have to take into
account the rccognit,ion differential of the typ-
ical hun~an observer). Figure 4b shows the
grap]ls  of the densities pm. ‘1’bcir  accuracy
in finding the marker (albeit after an initial
time  of uncertainty of duration x 7Ai) is very

encouraging.
I,ct us now look at an example  of the two-

dinlensiol(a] situation. In this instance, the
filter was designed assulning  a Poisson motion
model to find the simulated track of a small
disk nlo~ ing over the water on a Synthetic
Aperture Radar image of tile l’acific  ocean off
Mission l]each.  The disk was “synthetically”
added to the original ilnage. ‘1’he SAIL reso-
lution  w:is about 10 meters, and wc assumed
the c)bjef t was a disk wit}l a 5-nwter  clian]e-
ter.  A pi, cewise  linear track was generated us-
ing a ra]ldom num})er  generator to choose the
straight- rourse durations, assuming that the
new vclc, city at every course change is chosen
from a st of 23 pc)ssihilities, with probability
as described in Figure  5. One can immediately
anticipate that the resolution of the SAR in~-
ages conlpared  to the size and motion paran~-
cters  of the object sllou]d create a substantial
ambigui[y  in tllc localization of the object: in-
deed the object  may in reality move according
to the loode] used without having a greatly
perceivable effect on tl]c ?,ixel intensities. Nev-
ertlleles>, one can still ask within which pixel
the obj~ ct is at any point  in time. To answer
that qumtion  ~]sing our method, the n~otion
model chosen tc, design the filter was slightly
different from tile one which generated the ac-
tual  track: vie used tile filter derived for the
Poisson model, assuming that the marker was
likely tcl change course on average once every
time st( p, with its ncw velocity one of the nine
possibilities .msc)ciatecl to each of the nine pix-
els adjacent to the one it “occupies”. ‘That is
appropl  iate wllcn tile conditional dcmsity is in
the first place ap~)roxi]nated  by an admittedly
inexact but adequate matrix whose entries are
nleant  10 represent the nearly constant value
of the tlcnsity cwer each pixel. The result is a
quite a-curate localization algorithm (see figs.
6 and 7). For the first test, t}le additive white
,gaussian noise was p;erierated so that its vari-
ance }Yould be that of tile san~plc variance of
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tllc original pixc] intensities over the left half
of tllc picture (rougl)ly,  the ocean part of the
scene). ‘1’llc intensity of the nlarker  (per rrllit
area)  w a s  clloscn to equal that, c)f the brighte-
st spot, on that left portion. Duc to the snlall
area of tl]c disk, this translates to a signal-t~
noise ratio of 11 .7d11 at best (when the nlarker
falls entirely lvitllin a Ijixel), hut it could I)c as
low as – .25cIII (if the nlarker  overlays four ad-
jacent pixels). “1’IIc  track origin was chosen so
that, this  least  advantageous case occurs at the
firs( frame. ‘] ’he intial  density was assurnccl
unifornl  over the upper left quadrant of the
inlage. F’igure G snows the successively syll-
tllesizcd  noisy in~ages,  together with a gray-
in{ensity  plot, of tllc updated conditional dcli-
sity function. ‘J’he second test. waspcrforn~ed
wi~ll the intensity of tllc nlarkcr  reduced to
acllicve asignal-tc-noiser  atiohetwecn 7dFl (in
tllc best  case) and –5d11  (in the worst case,
which, again, occurcd on thetlrst frarnc). Ttle
plots  of the clcnsity  function in that case (fig.
7) SIIOW that in spite  of sornc initial uncer-
tainty, the localization is quite good after nillc
franlcs.  q’llesc results  conflrn lthatonecanl~
calizc the position of the object, at least to
within tile resolution of the original inlages,
in the presence  of substantial noise and given
that the ol~ject cross-section rnakcs  it quite un-
dctcctal)lc  on any single inlagc.

‘1’llesc  cxanlljles  also show that the algo-
rithm is not very scn.sitive to cllangcs in tile
forn~ or intensity of the object. Indeed, We
specifically CIIOSC an object size smaller than
the dinwnsionsof a pixel, and allowed the ob-
ject to move in such a way that its intensity
would contribute to one, two or even four ad-
jacent pixels, thus n~aking the SNR fluctuate
by as nmch as 12cIB. This robustness is en-
couraging.  The con~putation  cflciency  of tllc
algoritllnl  is less inlpressive.  q’he last exarnp]e
was inlplenlcntcd  on a SUN Spare 2 worksta-
tion, ancl required several  n~inutcs  of prcJccss-
ing tirnc. It is tbcrcfore  clear that the n~et,llod

in its present forln is interesting only in those
cases where tile SNR is so low that the ob-
ject is not detectable orl a single inlagc, i.e.
in thc)se cases wllcrc tracking is necessary in
order to (Ietect and localize.
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Appendix A
llerc is a silnplified sunmlary  of tlhose results of
It. hfortenscn,  q’. lhrncan  and Zakai whic]l  we
will need (for a conlplete  account, see [hIZ],
[IUVI], [TD], or [1,S]). Assume that X, is a
stochastic process in W satisfying the stochas-
tic equation

dx~ = h(xt)di + g(Xt)dBf  , (Al)

W]lerC  }1 :Rn-iRr’alldg:R’a+{n x

m n~atriccs} are twit.c-diflerentiahle functio]ls.
and IIt is Brownian  motion in R’”, Assume we
dispose of observations }; (a stochastic process
in RL) which obey

d}: = f(xt)dt j- udbt , (A2)

wllerc c i s  a  r ea l  constant,,  j : R’? -+ Ftk is
a diflerentiahlc  function, and 61 is Ilrowliian

motion ill Rk. Assunle further that, I]t, ~t, and
10 are ill(lcpendrnt  for all t different from t’,
Given an initial density p. for the states of .Yo,
tl)c conditional density p(t,  I given Y. for s <
f) for Xt,  given all >“., up to tinw f, nlust  satis~
tile (Zakai) equation

~vhere p and j are related t)y p(t,  ~) =
a(t)c’i’J(  ’’J102~(f, r) in which the function o

takes that value nlaking
J

p(t,  2’)d.T! u ] f o r

all t, and where the c)perator D is given by

(div h)i -- ~~3 l~lz~,

(Ilere g~’ <Icnotcs the transpose of the nlatrix g,
and div h denotes the divergence of h), the Z~h
conlpc)nellt  of the vector operator 1)’ is given
l)y

(D’j), := [f,, D]j,

(where tllc ternl  on the right  refers to the con~-
mutator of tile two operators “llllllt,i~~]icatioll
l,y ~,” anl D), and the matrix  operator 1)” is
Riven by

(D’’@,,  = ;[J!, [f, ! m

Once p IIas been conlputed  h y  s o l v i n g
(I)e Zakai e q u a t i o n with initial condition
pltc~) = ~~,), the required conditional expecta-
1 I,-)n  }’{J, I y,, O  < T < t} can be cornputcd
hy I,trforlning  the integral l’~{x~[ y,, O < T <

/)=
{

~(,(/,.I’)dJ’. (Note  that ifj, g and h are

Ilncar”.  i,e wllcn the filtering problenl  is linear,
Kaltnan snowed tt]at the conclitiona] expecta-
I IIOn  can t lIcn hc calculated directly by solving
a cr]ll~~led  systenl  consisting of a linear eclua-
L ion irt n variables driven hy the observations,
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coupled to a Riccati  equation in n(n -1 1 )/2
varial)lcx  involving the second nlonlent  olIly.
‘J’llat is infinitely rnorc n~auageable than hav-
ing to find tllc function p of n + 1 variallles
solving tile Za!iai partial differential equation).

Figure  Captions

Figurw  1

‘1’wenty-five l-dimensional consecutive “snap-
shots” , with tinw increasing upward, 2’l)C
noise was synthesized to get a = .1; the iig-
ures on the right arc the values of the optilna]
filter  ~; in this case, they equal the (horizon-
tal)  coordinate of the position center of the
nlarkcr  exactly.

Figure  2

Sanle as in ligure  1, except  that the noise here
was synthesized to get a = 1; note that, the
filter output rcnlains  within  3(%Ax  of tile ex-
act position as of t,i~ne L = 7At in spite of
tbc fact that *O was assunlcd  uniforvnly dis-
tributed over thcintcrval [(),  128Ax].

Figure 3 a

Snapshots of a nlarkcr  nioving in noise genera-
ted to obtain c = .5; the exact positions of
the center  of tbc nlarkcr  were.gcncratcd using
tile I’oisson nloclcl with a rate of .2/At, and
are given by the figures to the right fo eac.11
“snapshots”.

Figure 31)

‘l’hcgrapbsof~&  c.alculatcdf  ron~tbeobserva-
tions  nladc  fronl Figure  3a, with j increasing
fronl Af to25Af fronlt,op  to botton~. Thefig-
urcs on the right are the values of the optimal
filter i = ~zpj~(~)dr.

Figure 4 a

Sarnc as F’igurc 3a, except that tl)e noise here
givcso:  1.

Figure 41)

Sarnc as Figure 3 b , using the observations
nlade from 12igure 4a.

Figuw  5a

‘liable sllc,willg  the I,robat)ility  density function
of tbc n(w velocity 1~ at each course change,
wberc V = [Vl(cos  O,sill  O); IV I is in units of
At’/At, where Ax is the width of apixcl, and
O in degrees. l’be difference between thesunl
of all the entries and 1 is tllc probability that,
v z 0.

Figure 51)

Sarnl,le track uscdinsilnulations. l’hc average
rate ofv~.locityc  liangcw’asch oscntobe  .4/Af.

Figure  5C

Synthesiycdnoisy  inlagec)fthat 128 x128-pixel
portion t, ftbc origina] ilnagc which wc used in
the sinlulations.

Figurc6

Consccuf  ive SAli  inlagcs with noise and evolv-
ing nlarker,  and the corresponding intensity
l,lots  of the updatecl  co]lditional  dcnsityfunc-
tiorlclcsc ri}.,it~g tllcl,c)sitic]I] oftlIe~l~arker.  The
dark spc)t in the upper left portion of the first
intensity plot is at the correct nlarker  position
at the initial tin~e. Theilktcnsity  of thenlarker
was chosen to achieve a “signal-t~noise’)  ra-
tion between –.25dlJ  and 11.7dD (depending
on wlletl[cr the nlarker  ison a pixel or between
~)ixels).

Figure 7
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lntm]sity ])lots  of the updated conditional clcn-
sity function describing the position of the
nlarkcr,  corresponding; to consecutive SARiltl-
agcs ~vitll noise and cvolvingnlarkcr,  asill Fig-
ure (;, except that the “signs]-to-noise” ratio
is l~ctwccn –5c III and 7cIII.
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Consecutive SAR images with noise and evolving marker, and the corresponding inten-
sity plots of the updated conditional density function describing the position of the
marker. The dark spot in the upper left portion of the first intensity plot is at the comect
marker position at the initial time. The intensity of the marker was chosen to achieve a
“signal-to-noise”  ratio between -.25dB and 11 .7dB  (depending on whether the marker is

on a pixel or between pixels).
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F-@A@’ti  ,~ , ‘

.~ -160,.,,,~_-71T8,j-4Q.j=4,~4Q.,...w.w
2/87 8/261 10/261 4/87 14/261 16/261 14/261 4/87 10/261 8/261 6/261
2/87 8/261 10/261 4/87 14/2.61 16/261 14/261 4/87 10/261 8/261 6/261

Table showing the probability density function ofthe  new velocity Vat each course change, where
V= IVI (cosO,sinO); IVI isinunitsofAx/At,wllereAris  the width of apixel, and6  in degrees.

The difference between the sum of all the entries and 1 is the probability that V = O.

Sample track used in the simulations. The average
rate of velocity change was chosen to be .4/At,

00

5 0

0
0 50 100

Synthesized noisy image of that 128x128-pixel portion
the original image which we used in the simulations.
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